Plasmon-induced transparency in metamaterials.

نویسندگان

  • Shuang Zhang
  • Dentcho A Genov
  • Yuan Wang
  • Ming Liu
  • Xiang Zhang
چکیده

A plasmonic "molecule" consisting of a radiative element coupled with a subradiant (dark) element is theoretically investigated. The plasmonic molecule shows electromagnetic response that closely resembles the electromagnetically induced transparency in an atomic system. Because of its subwavelength dimension, this electromagnetically induced transparency-like molecule can be used as a building block to construct a "slow light" plasmonic metamaterial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range

Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conve...

متن کامل

The Effect of Antenna Movement and Material Properties on Electromagnetically Induced Transparency in a Two-Dimensional Metamaterials

Increasing development of nano-technology in optics and photonics by using modern methods of light control in waveguide devices and requiring miniaturization and electromagnetic devices such as antennas, transmission and storage as well as improvement in the electromagnetic tool, have led researchers to use the phenomenon of electromagnetically induced transparency (EIT) and similar phenomena i...

متن کامل

Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers

Electromagnetically induced transparency is a type of quantum interference that induces near-zero reflection and near-perfect transmission. As a classical analogy, metal nanostructure plasmonic 'molecules' produce plasmon-induced transparency conventionally. Herein, an electromagnetically induced transparency interaction is demonstrated in silicon nanosphere oligomers, wherein the strong magnet...

متن کامل

Broadband plasmon induced transparency in terahertz metamaterials.

Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena and an enhanced nonlinear effect. However, the transparency mode is normally localized in a narrow frequency band, which thus restricts many of its application...

متن کامل

Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode

Related Articles Electromagnetically induced transparency with quantum interferometry J. Chem. Phys. 136, 084301 (2012) Huge enhancement of optical nonlinearities in coupled Au and Ag nanoparticles induced by conjugated polymers Appl. Phys. Lett. 100, 023106 (2012) Spatial hole burning degradation of AlGaAs/GaAs laser diodes Appl. Phys. Lett. 99, 103506 (2011) Optical limiting properties and ul...

متن کامل

Manipulating the plasmon-induced transparency in terahertz metamaterials.

Coupling between superradiant and subradiant mode resonators in a metamaterial unit cell plays an important role in observing the sharp transparency peak due to destructive interference between the resonators. This effect is enhanced as the resonators are brought closer to each other in a conventional planar arrangement. We present a novel coupling scheme of planar terahertz metamaterial to tun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 101 4  شماره 

صفحات  -

تاریخ انتشار 2008